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1. Introduction

Non-Newtonian fluid flows are encountered in a wide
range of engineering applications. Hot rolling, extrusion
of plastics, flow in journal bearings, lubrication, flow in
a shock absorber are some typical examples to name just
a few [1,2]. The increase of these applications in the past
decades have urged scientists and engineers to provide
mathematical models for non-Newtonian fluids. The
nonlinearity between stress and deformation rate for this
kind of fluids makes it, in general, impossible to obtain a
simple mathematical model as in the case for Newtonian
fluids. This difficulty has lead researchers to investigate
relatively simple non-Newtonian fluid models. In this
sense, simple viscometric flows have been extensively
studied to date, which include a number of problems
of engineering interest [1–3]. For viscoelastic fluids,
which are also known as second-order fluids, a simple
model is proposed by Rivlin and Ericksen [4,5]. This
model predicts normal stress effects but it maintains
Newtonian viscosity. Therefore, its range of applicabil-
ity is limited to very low deformation rates or to materi-
als that are only slightly viscoelastic. For flows with
moderate or high deformations rates it is required to
use a third-order model or a variable viscosity model
proposed by White and Metzner [6], who assumed the
Newtonian viscosity term to depend on these invariants
of the acceleration tensors. A detailed discussion on sec-
ond and third-order fluids can be found in the study of
Dunn and Rajagopal [7].
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Based on these models several studies concerning sim-
ple flow problems have been published; namely, the flow
near a stagnation point has been investigated by Srivas-
tava [8] in the case of viscoinelastic fluid. Rajeswari
and Rathna [9] extended the work of Srivastava to two
and three dimensional viscoelastic and viscoinelastic
fluid flow. Among more recent publications, Raghay
and Hakim [10] have developed a finite volume technique
for the simulation of viscoelastic flow usingWhite–Metz-
ner fluid model. Shin et al. [11] considered the heat trans-
fer behavior of a temperature dependent non-Newtonian
fluid with Reiner–Rivlin model in a 2:1 channel. Hady
and Gorla [12], investigated the effect of uniform suction
or injection on flow and heat transfer from a continuous
surface in a parallel free stream of viscoelastic second-
order fluid. Jordan and Puri [13] considered Stokes� first
problem for a Rivlin–Ericksen fluid of second grade in a
porous half-space under isothermal conditions. Hayat
et al. [14] studied the unsteady flow of a third-grade fluid
occupying the space over a wall with suction or blowing
at the wall surface. The constitutive equation used by
Hayat is more complex than that introduced by White
and Metzner [6] since it includes all third-order terms.
The fact that Lie groups are used in the analysis of the
resulting governing equations is also a remarkable aspect
of this study. Another interesting study is performed by
Sundaravadivelu and Tso [15], who investigated the
influence of viscosity variations on the forced convection
flow through two types of heterogeneous porous media
with isoflux boundary condition. They found that viscos-
ity variations strongly effect the heat transfer characteris-
tics of the porous medium.

Non-Newtonian fluid flows that are attractive to
researchers are many times flows that have well known
solutions in the Newtonian counterpart, i.e. flows that
ed.
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Nomenclature

An Rivlin–Ericksen acceleration tensors
C specific heat
Cm series coefficients for temperature distribu-

tion
I unit tensor
K viscoelastic parameter (=/1/qL

2)
L width of cooling channel (Fig. 1)
p pressure
Pr Prandtl number (Pr = /1C/j)
q nondimensional temperature
Re Reynolds number (Re = qVL/l)
T temperature
u, v velocity components in x and y directions
V injection velocity
x, y Cartesian coordinates

Greek symbols

g similarity parameter (y/L)
j heat conduction coefficient
r stress tensor
l Newtonian viscosity coefficient
q density
sij components of stress tensor r
/1 viscoelastic coefficient
/2 cross-viscosity coefficient
U dissipation function
W stream function

Subscript

m power-law index for temperature distribu-
tion

Heated surface

L

x

 y 

Fig. 1. Analytical model of channel flow.
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are in depth investigated in the Newtonian case. One
such typical flow is the laminar flow in porous channels
or half spaces and the studies mentioned above are in-
deed of this kind. Early studies in this area are the works
of Berman [16], Yuan and Finkelstein [17], White and
Barfield [18] and Terill [19], which are important from
point of view of technical applications of porous channel
flows. Indeed, Debruge and Han [20] presented a
method for turbine cooling based on these works.
Recently, Goldstein et al. [21–23] have published a re-
view of the 1999, 2000, 2001 literature on heat transfer
including sections on porous media and channel flows
of Newtonian and non-Newtonian fluids. Also, Ariel
[24] provided an exact solution for the flow prob-
lems of a second grade fluid through two parallel
porous flows in two-dimensional and axially symmetric
cases.

In the present paper, the laminar flow of a second
grade viscoelastic fluid between two parallel plates, one
of which is externally heated and cooled by coolant
injection through the other plate, is taken into consider-
ation. The aim of the present study is to investigate two
physical aspects of the flow described above, namely: the
behavior of the wall friction, which is a measure for the
power required for cooling, and the cooling performance
depending on the viscoelastic or viscoinelastic coefficient
since these two properties make up the overall perfor-
mance of the cooling process.
2. Statement of the problem and governing equations

In this section, the steady-state laminar flow of a vis-
coelastic fluid between two parallel flat plates is consid-
ered as depicted in Fig. 1. The wall that coincides with
the x -axis is heated externally and from the other perfo-
rated wall viscoelastic fluid is injected uniformly in order
to cool the heated wall and the y-axis is perpendicular to
the x-axis. In this perspective the flow field may be as-
sumed to be stagnation flow.

If the flow is considered steady and two-dimensional
the following governing equations can be written:

Continuity

r � ~V ¼ 0 ð1Þ

Momentum

q
D~V
Dt

¼ r � r ð2Þ

Energy

qC
DT
Dt

¼ jr2T þ U ð3Þ

The most extensively investigated model for viscoelastic
media is the second-order fluid model suggested by Riv-
lin and Ericksen [4]. For this kind of fluids the simplest
constitutive equation is given by
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r ¼ �pI þ lA1 þ /1A2 þ /2A
2
1 ð4Þ

A1 and A2 are acceleration tensors given by

A1 ¼ r~V þ ðr~V ÞT ð5Þ

A2 ¼
dA1

dt
þ A1ðr~V Þ þ ðr~V ÞTA1 ð6Þ

where d/dt denotes material time derivative, and $ gra-
dient operator and ( )T transpose operator.

Recent theoretical investigations by Dunn and Fos-
dick [25] and Fosdick and Rajagopal [26] have indicated
that for an exact model satisfying the Clauss–Duhen
inequality and the assumption that the specific Helm-
holtz free energy be a minimum in equilibrium, the fol-
lowing conditions must hold:

l P 0; /1 P 0; /1 þ /2 ¼ 0 ð7Þ
For the solution of the present heat transfer problem

firstly the velocity field must be determined. Then the
solution of the energy equation can be performed. For
the velocity field it is convenient to define a stream func-
tion so that the continuity equation is satisfied

w ¼ xVf ðgÞ ð8Þ
Using Eqs. (2), (4)–(7) and eliminating the pressure

term from the momentum equation the following
expression can be obtained:

f 0f 00 � ff 000 ¼ f lv

Re
þ Kðf 0f iv � ff vÞ ð9Þ

with the boundary conditions

f ð0Þ ¼ f 0ð0Þ ¼ f 0ð1Þ ¼ 1� f ð1Þ ¼ 0 ð10Þ

Eq. (9) only contains elastic terms resulting from the
A2. The terms resulting from A2

1 are automatically equal
to zero. Eq. (9) is a nonlinear equation and difficult to
solve. In order to overcome this difficulty it is convenient
to apply a perturbation method. In the case of viscoelas-
tic fluid flow, assuming K� 1 it is possible to write

f ¼ f0 þ Kf 1 þ K2f2 þ � � � ð11Þ

Inserting Eq. (11) into Eq. (9) gives the following pertur-
bation relations:

f iv
0

Re
� f 0

0f
00
0 þ f0f 000

0 ¼ 0 ð12Þ

f lv
1

Re
� f 0

0f
00
1 � f 0

1f
00
0 þ f0f 000

1 þ f1f 000
0 ¼ f0f v

0 � f 0
0f

iv
0 ð13Þ

f lv
2

Re
þ f0f 000

2 � f 0
0f

00
2 � f 0

2f
00
0 þ f2f 000

0 þ f1f 000
1

� f 0
1f

00
1 þ f 0

0f
lv
1 þ f 0

1f
lv
0 � f0f v

1 � f1f v
0 ¼ 0 ð14Þ

with the following boundary conditions:

f0ð0Þ ¼ f 0
0ð0Þ ¼ f 0

0ð1Þ ¼ f0ð1Þ � 1 ¼ 0 ð15Þ
fið0Þ ¼ f 0

i ð0Þ ¼ f 0
i ð1Þ ¼ fið1Þ ¼ 0 ði ¼ 1; 2; 3; . . .Þ ð16Þ

In order to simplify the analysis of the performance
of the cooling scheme, it is assumed that the porous
plate (y = L) has the same temperature as that of the
incoming coolant, namely T0. The heated wall is as-
sumed to have a polynomial variation symmetrical
about x = 0

T w ¼ T 0 þ
X

m¼0

Cmðx=LÞm ð17Þ

In this perspective, at a distance y form the wall, the
temperature of the fluid can be expressed as:

T ¼ T 0 þ
X

m¼0

Cmðx=LÞmqmðgÞ ð18Þ

Neglecting dissipative effects and the conduction flux
along the x-direction and introducing Eqs. (8) and (18)
into Eq. (3), one obtains the following equation contain-
ing terms of various powers of x (m = 0,1,2, . . .)

mf 0qm � fq0m ¼ 1

PrRe
q00m ðm ¼ 0; 1; 2; 3; . . .Þ ð19Þ

with boundary conditions

qmð0Þ ¼ 1; qmð1Þ ¼ 0 ð20Þ
3. Numerical solution and results

The perturbation equations (12)–(14) obtained in the
previous section, have been numerically solved using the
fourth-order Runge–Kutta–Gill method. Since the equa-
tions to be solved are of fourth-order, the values of fi,
f 0
i ; f 00

i ; f 000
i at the starting point of integration (g = 0 in

this case) are needed. According to the given boundary
conditions (15) and (16) the values of f 00

i ; f 000
i are un-

known. Their values are determined by the shooting
method. This is done as follows: two arbitrary values
are assigned to f 00

i ð0Þ and f 000
i ð0Þ. Then the integration

is performed starting from g = 0 up to g = 1. That
values for f 00

i ð0Þ and f 000
i ð0Þ were assumed to be accurate

enough for which the following inequalities were
satisfied:

jf0;calculatedð1Þ � 1j 6 10�5 and

jfi;calculatedð1Þj 6 10�5 ði ¼ 1; 2; 3Þ ð21Þ

jf 0
i;calculatedð1Þj 6 10�5 ði ¼ 0; 1; 2; 3; . . .Þ ð22Þ

Following this procedure solutions have been ob-
tained for various Reynolds numbers ranging from
0.25 to 50 for which the missing initial values are given
in Table 1. The fact that the initial conditions for the
second and third-order perturbation terms grow with
increasing Reynolds puts a limitation on the value of
the viscoelastic parameter K. Table 1 is not only impor-
tant from point of view of accuracy of the solution but
also due to the fact that it contains information on the
variation of the wall friction parameter f 00(0) with the
Reynolds number, namely



Table 1
Initial values for the solution of momentum equation

Re f 00
0 ð0Þ f 000

0 ð0Þ f 00
1 ð0Þ f 000

1 ð0 f 00
2 ð0Þ f 000

2 ð0Þ
0.25 6.1141 �12.58185 �0.02829 0.1362 0.02009 �0.074060
0.5 6.22789 �13.17031 �0.11889 0.57495 0.1611 �0.60918
1.0 6.4542 �14.3657 �0.5193 2.54033 1.32199 �5.2398
5.0 8.1738 �24.5833 �18.5207 104.37501 246.9776 �1302.0718
10.0 10.0367 �38.10206 �78.2745 525.60994 2241.2134 �15028.64306
30.0 15.371 �92.29445 �533.2404 5452.02574 42363.5649 �470219.37423
50.0 19.1794 �145.45262 �1197.6284 15340.61668 155687.0579 �2205475.0910
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sxy ¼ l
xV

L2
f 00ð0Þ ð23Þ

In order to find out the effect of the second-order pertur-
bation term on the wall friction parameter some calcu-
lated values for various Reynolds numbers have been
given in Table 2. According to the table the first-order
term has a decreasing effect on the wall friction whereas
the second-order terms does modify first-order solution.

A graphical representation of the variation of f00(0)
with the Reynolds number is given in Fig. 2 for various
values of K. In this figure, for f 00(0), only the first-order
perturbation term is considered. One can observe that
for values of K < 0.03, f 00(0) increases with the Reynolds
Table 2
Values of f00(0) for various values of Re and K = 0.02

Re f 00
0 ð0Þ f 00

0 ð0Þ þ Kf 00
1ð0Þ f 00

0 ð0Þ+Kf 00
1ð0Þ+K2f 00

2 ð0Þ
0.25 6.1141 6.113534 6.113542
0.5 6.22789 6.225512 6.225577
1.0 6.4542 6.443814 6.444343
5.0 8.1738 7.803386 7.902177
10.0 10.0367 8.47121 9.367695
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Fig. 2. f 00(0) for various values of K.
number and for K > 0.03 there is a maximum point
value in the f 00(0)–Re curve. In addition f 00(0) decreases
with increasing value of K. It can be concluded that
f 00(0) certainly decreases with increasing K values which
is favorable from point of view of reducing friction
force. This figure also reveals that the maximum allow-
able value for the viscoelastic parameter in order to ob-
tain realistic results is at the order of hundreds in the
interval Re < 10.

The results for the velocity field are shown in Fig. 3.
The variation of the x-component of the velocity vector
is given for various values of the Reynolds number. Two
interesting observations can be made. At low Reynolds
numbers the velocity profiles exhibit centerline symme-
try indicating a Poiseuille flow. At higher Re numbers
the maximum velocity point is shifted to the solid wall
where shear stress becomes larger as the Re number
grows. This behavior of the velocity variation remains
unchanged for K > 0. The dependency of the velocity
variation on the viscoelastic parameter is such that the
effect of the viscoelastic coefficient becomes stronger
for greater Reynolds numbers. For Re = 1 the viscoelas-
tic parameter K has not much influence, i.e. Newtonian
and viscoelastic case (K = 0.02) practically coincide.
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Fig. 3. f 0(g) vs. for various Re and K.
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The solution of the energy equation is also obtained
by applying the Runge–Kutta method described above.
The criterion for convergence is taken as

jqm;calculated � qmð0Þj 6 10�5

The cooling performance is presented in terms of the
nondimensional Nusselt number. However, it should be
pointed out here that it is not possible to obtain a single
value for the heat transfer coefficient along the heated
wall if the wall temperature follows a polynomial varia-
tion, unless the temperature profile along the blade sur-
face is expressed by a single term in Eq. (17), i.e.

T w ¼ T 0 þ Cmðx=LÞm ð24Þ

In this case a heat transfer coefficient hm can be defined
as

hmðT w � T 0Þ ¼ �jðoT=oyÞ ð25Þ

and the nondimensional Nusselt number is than ob-
tained as:

Num ¼ ðhmL=jÞ ¼ �q0mð0Þ ð26Þ

Taking the Prandtl number, viscoelastic parameter K

and the power law index m as parameters, the variation
of the Nusselt number with the Reynolds number is
illustrated in Fig. 4. The specific values of the parame-
ters number were chosen as an example. It can be ob-
served that the power law index m, which represents
the temperature variation on the heated wall and is
not a property of the cooling fluid, has an increasing ef-
fect on the Nusselt number. However, we are rather
interested in the influence of properties of the coolant
fluid on the heat transfer, namely, its viscoelasticity
and Prandtl number. The Prandtl number obviously
has a strongly increasing effect. The same is not true
for the viscoelastic parameter K, which clearly reduces
the Nusselt number when compared with Newtonian
fluid flow.
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Fig. 4. Nu vs. Re effect of K and Pr.
4. Conclusion

In this paper, the flow of a non-Newtonian viscoelas-
tic fluid between two parallel flat plates is studied. The
flow occurs between two parallel plates one of which is
externally heated. In order to cool the heated plate cool-
ant fluid is injected from the other plate, which is perfo-
rated. Two aspects of the flow are investigated, namely,
(i) wall friction, which is a measure for the energy re-
quired for coolant injection (ii) heat transfer characteris-
tics. It is found out that the wall friction decreases in
case a viscoelastic coolant is used. In contrast, the cool-
ing performance, i.e. the Nusselt number, becomes
worse with respect to Newtonian fluid.
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